Will Scientists Ever Discover Life Without A Home Planet? (Synopsis) [Starts With A Bang]


“An extrapolation of the genetic complexity of organisms to earlier times suggests that life began before the Earth was formed. Life may have started from systems with single heritable elements that are functionally equivalent to a nucleotide.” -Alexei A. Sharov & Richard Gordon

We talk about the origin of life on Earth with bated breath, wondering all the time how things occurred to make our planet unique. But within that big question lies an assumption that may not be true: that life on Earth originated on Earth itself. It’s entirely possible, based on what we’ve seen out there in the Universe, that life didn’t originate here at all. Rather, it could have come from a primitive, pre-existing world, or even from the depths of interstellar space itself.

A rich nebula of gas, pushed out into the interstellar medium by the hot, new stars formed in the central region. Earth may have formed in a region like this, and this region may already be teeming with primitive forms of life, under some set of rules and definitions. Image credit: Gemini Observatory / AURA.

If it’s the latter case — interstellar space — then perhaps we don’t even require a planet at all to create the more primitive forms of life itself. Perhaps all you need is a molecule that encodes information, reproduces itself, and converts external energy for use in biological processes. And if that’s the case, the origin of life may bear very little resemblance to what life has evolved into today.

On this semilog plot, the complexity of organisms, as measured by the length of functional non-redundant DNA per genome counted by nucleotide base pairs (bp), increases linearly with time. Time is counted backwards in billions of years before the present (time 0). Image credit: Shirov & Gordon (2013), via http://ift.tt/2uKyfQg.

Could pretty much all places in the Universe, by the present time, have these ingredients that qualify as life? Let’s look at the evidence!



from ScienceBlogs http://ift.tt/2uFzap9

“An extrapolation of the genetic complexity of organisms to earlier times suggests that life began before the Earth was formed. Life may have started from systems with single heritable elements that are functionally equivalent to a nucleotide.” -Alexei A. Sharov & Richard Gordon

We talk about the origin of life on Earth with bated breath, wondering all the time how things occurred to make our planet unique. But within that big question lies an assumption that may not be true: that life on Earth originated on Earth itself. It’s entirely possible, based on what we’ve seen out there in the Universe, that life didn’t originate here at all. Rather, it could have come from a primitive, pre-existing world, or even from the depths of interstellar space itself.

A rich nebula of gas, pushed out into the interstellar medium by the hot, new stars formed in the central region. Earth may have formed in a region like this, and this region may already be teeming with primitive forms of life, under some set of rules and definitions. Image credit: Gemini Observatory / AURA.

If it’s the latter case — interstellar space — then perhaps we don’t even require a planet at all to create the more primitive forms of life itself. Perhaps all you need is a molecule that encodes information, reproduces itself, and converts external energy for use in biological processes. And if that’s the case, the origin of life may bear very little resemblance to what life has evolved into today.

On this semilog plot, the complexity of organisms, as measured by the length of functional non-redundant DNA per genome counted by nucleotide base pairs (bp), increases linearly with time. Time is counted backwards in billions of years before the present (time 0). Image credit: Shirov & Gordon (2013), via http://ift.tt/2uKyfQg.

Could pretty much all places in the Universe, by the present time, have these ingredients that qualify as life? Let’s look at the evidence!



from ScienceBlogs http://ift.tt/2uFzap9

Aucun commentaire:

Enregistrer un commentaire