I mentioned in passing in the Forbes post about science funding that I’m thoroughly sick of hearing about how the World Wide Web was invented at CERN. I got into an argument about this a while back on Twitter, too, but had to go do something else and couldn’t go into much detail. It’s probably worth explaining at greater-than-Twitter length, though, and a little too inside-baseball for Forbes, so I’ll write something about it here.
At its core, the “CERN invented WWW” argument is a “Basic research pays off in unexpected ways” argument, and in that sense, it’s fine. The problem is, it’s not anything more than that– its fine as an argument for funding basic research as a general matter, but it’s not an argument for anything in particular.
What bugs me is now when it’s used as a general “Basic research is good” argument, but that it’s used as a catch-all argument for giving particle physicists whatever they want for whatever they decide they want to do next. It’s used to steamroll past a number of other, perfectly valid, arguments about funding priorities within the general area of basic physics research, and that gets really tiresome.
Inventing WWW is great, but it’s not an argument for particle physics in particular, precisely because it was a weird spin-off that nobody expected, or knew what to do with. In fact, you can argue that much of the impact of the Web was enabled precisely because CERN didn’t really understand it, and Time Berners-Lee just went and did it, and gave the whole thing away. You can easily imagine a different arrangement where Web-like network technologies were developed by people who better understood the implications, and operated in a more proprietary way from the start.
As an argument for funding particle physics in particular, though, the argument undermines itself precisely due to the chance nature of the discovery. Past performance does not guarantee future results, and the fact that CERN stumbled into a transformative discovery once doesn’t mean you can expect anything remotely similar to happen again.
The success of the Web is all too often invoked as a way around a very different funding argument, though, where it doesn’t really apply, which is an argument about the relative importance of Big Science. That is, a side spin-off like the Web is a great argument for funding basic science in general, but it doesn’t say anything about the relative merits of spending a billion dollars on building a next-generation particle collider, as opposed to funding a thousand million-dollar grants for smaller projects in less abstract areas of physics.
There are arguments that go both ways on that, and none of them have anything to do with the Web. On the Big Science side, you can argue that working at an extremely large scale necessarily involves pushing the limits of engineering and networking and working in those big limits might offer greater opportunities for discovery. On the small-science side, you can argue that a greater diversity of projects and researchers offers more chances for the unexpected to happen compared to the same investment in a single enormous project.
I’m not sure what the right answer to that question is– given my background, I’m naturally inclined toward the “lots of small projects (in subfields like the one I work in)” model, but I can see some merit to the arguments about working at scale. I think it is a legitimate question, though, one that needs to be considered seriously, and not one that can be headed off by using WWW as a Get Funding Forever trump card for particle physics.
from ScienceBlogs http://ift.tt/2mzoggJ
I mentioned in passing in the Forbes post about science funding that I’m thoroughly sick of hearing about how the World Wide Web was invented at CERN. I got into an argument about this a while back on Twitter, too, but had to go do something else and couldn’t go into much detail. It’s probably worth explaining at greater-than-Twitter length, though, and a little too inside-baseball for Forbes, so I’ll write something about it here.
At its core, the “CERN invented WWW” argument is a “Basic research pays off in unexpected ways” argument, and in that sense, it’s fine. The problem is, it’s not anything more than that– its fine as an argument for funding basic research as a general matter, but it’s not an argument for anything in particular.
What bugs me is now when it’s used as a general “Basic research is good” argument, but that it’s used as a catch-all argument for giving particle physicists whatever they want for whatever they decide they want to do next. It’s used to steamroll past a number of other, perfectly valid, arguments about funding priorities within the general area of basic physics research, and that gets really tiresome.
Inventing WWW is great, but it’s not an argument for particle physics in particular, precisely because it was a weird spin-off that nobody expected, or knew what to do with. In fact, you can argue that much of the impact of the Web was enabled precisely because CERN didn’t really understand it, and Time Berners-Lee just went and did it, and gave the whole thing away. You can easily imagine a different arrangement where Web-like network technologies were developed by people who better understood the implications, and operated in a more proprietary way from the start.
As an argument for funding particle physics in particular, though, the argument undermines itself precisely due to the chance nature of the discovery. Past performance does not guarantee future results, and the fact that CERN stumbled into a transformative discovery once doesn’t mean you can expect anything remotely similar to happen again.
The success of the Web is all too often invoked as a way around a very different funding argument, though, where it doesn’t really apply, which is an argument about the relative importance of Big Science. That is, a side spin-off like the Web is a great argument for funding basic science in general, but it doesn’t say anything about the relative merits of spending a billion dollars on building a next-generation particle collider, as opposed to funding a thousand million-dollar grants for smaller projects in less abstract areas of physics.
There are arguments that go both ways on that, and none of them have anything to do with the Web. On the Big Science side, you can argue that working at an extremely large scale necessarily involves pushing the limits of engineering and networking and working in those big limits might offer greater opportunities for discovery. On the small-science side, you can argue that a greater diversity of projects and researchers offers more chances for the unexpected to happen compared to the same investment in a single enormous project.
I’m not sure what the right answer to that question is– given my background, I’m naturally inclined toward the “lots of small projects (in subfields like the one I work in)” model, but I can see some merit to the arguments about working at scale. I think it is a legitimate question, though, one that needs to be considered seriously, and not one that can be headed off by using WWW as a Get Funding Forever trump card for particle physics.
from ScienceBlogs http://ift.tt/2mzoggJ
Aucun commentaire:
Enregistrer un commentaire