How Does Quantum Mechanics Allow The Sun To Shine? (Synopsis) [Starts With A Bang]


“The bedrock nature of space and time and the unification of cosmos and quantum are surely among science’s great ‘open frontiers.’ These are parts of the intellectual map where we’re still groping for the truth – where, in the fashion of ancient cartographers, we must still inscribe ‘here be dragons.'” -Martin Rees

Inside the nuclear furnace of the Sun, protons and other atomic nuclei are compressed together into a tiny region of space, where the incredible temperatures and energies try to overcome the repulsive forces of their electric charges. At a maximum temperature of 15 million K, and with a long-tailed (Poisson) distribution of energies at the highest end, we can compute how many protons are energetic enough to overcome the Coulomb barrier.

Different colors, masses and sizes of main-sequence stars. Image credit: Morgan-Keenan-Kellman spectral classification, by wikipedia user Kieff; annotations by E. Siegel.

Different colors, masses and sizes of main-sequence stars. Image credit: Morgan-Keenan-Kellman spectral classification, by wikipedia user Kieff; annotations by E. Siegel.

That number is exactly zero. When you consider that 95% of stars are less massive and reach lower core temperatures than our Sun, the problem appears to be even bigger. Yet we’re saved by quantum mechanics, where spread-out wavefunctions can overlap, and nuclear fusion as we know it can proceed.

Image credit: E. Siegel, of how nuclear fusion occurs in the Sun thanks to quantum mechanics. From chapter 5 of his new book, Beyond The Galaxy.

Image credit: E. Siegel, of how nuclear fusion occurs in the Sun thanks to quantum mechanics. From chapter 5 of his new book, Beyond The Galaxy.

At a fundamental level, it’s only the quantum nature of our Universe that enables the stars to shine at all.



from ScienceBlogs http://ift.tt/1TXIZmR

“The bedrock nature of space and time and the unification of cosmos and quantum are surely among science’s great ‘open frontiers.’ These are parts of the intellectual map where we’re still groping for the truth – where, in the fashion of ancient cartographers, we must still inscribe ‘here be dragons.'” -Martin Rees

Inside the nuclear furnace of the Sun, protons and other atomic nuclei are compressed together into a tiny region of space, where the incredible temperatures and energies try to overcome the repulsive forces of their electric charges. At a maximum temperature of 15 million K, and with a long-tailed (Poisson) distribution of energies at the highest end, we can compute how many protons are energetic enough to overcome the Coulomb barrier.

Different colors, masses and sizes of main-sequence stars. Image credit: Morgan-Keenan-Kellman spectral classification, by wikipedia user Kieff; annotations by E. Siegel.

Different colors, masses and sizes of main-sequence stars. Image credit: Morgan-Keenan-Kellman spectral classification, by wikipedia user Kieff; annotations by E. Siegel.

That number is exactly zero. When you consider that 95% of stars are less massive and reach lower core temperatures than our Sun, the problem appears to be even bigger. Yet we’re saved by quantum mechanics, where spread-out wavefunctions can overlap, and nuclear fusion as we know it can proceed.

Image credit: E. Siegel, of how nuclear fusion occurs in the Sun thanks to quantum mechanics. From chapter 5 of his new book, Beyond The Galaxy.

Image credit: E. Siegel, of how nuclear fusion occurs in the Sun thanks to quantum mechanics. From chapter 5 of his new book, Beyond The Galaxy.

At a fundamental level, it’s only the quantum nature of our Universe that enables the stars to shine at all.



from ScienceBlogs http://ift.tt/1TXIZmR

Aucun commentaire:

Enregistrer un commentaire